Daniel Esposito Wins 2018 NSF Career Award

Five Columbia Engineering professors have won the National Science Foundation’s prestigious Faculty Early Career Development (CAREER) awards this year. Their work carries extraordinary transformative potential: Agostino Capponi is creating a framework to increase the resilience of global financial markets and other complex network systems, Dan Esposito is developing electocatalytic materials to propel a future of abundant solar fuels, Karen Kasza’s research on tissue mechanics could illuminate their role in birth defects and lead to the invention of new biologically inspired materials, Ioannis Kougioumtzoglou is devising a more robust and efficient modeling technique that can transcend the limitations of current stochastic engineering dynamical systems, and James Teherani is working on a class of transistors to drive ultra-low-energy electronics. The grants, each totaling $500,000 over five years, are among the most competitive given by the NSF.

“We are so pleased for our professors, whose forefront research promises to bring innovations that will benefit humanity,” says Mary Boyce, Dean of Columbia Engineering. “They join a growing cadre of NSF CAREER award winners on our faculty, whose research is addressing a wide range of challenges from sustainability to connectivity.”

Daniel Esposito
—Photo credit: Eileen Barroso 

Daniel Esposito, assistant professor of Chemical Engineering, leads a research group that develops solar, catalytic, and electrochemical energy conversion technologies that convert abundant and renewable solar energy into storable “solar fuels” such as hydrogen. For his CAREER award, Esposito and his lab will develop new electocatalytic materials that could significantly improve the efficiency and selectivity of complex electrochemical reactions. Esposito is especially focused in exploring how electrochemical reactions occur at the buried interface between the overlayer and metal catalyst, with hopes of exploiting any unique opportunities to control chemical reaction pathways discovered there. (Read more about Esposito’s research project.)

Read more about this story here.

500 W. 120th St., Mudd 801, New York, NY 10027    212-854-4453                 
©2018 Columbia University