Academics

Chemical Engineering is a highly interdisciplinary field concerned with materials and processes at the heart of a broad range of technologies. Practicing chemical engineers are the experts in charge of the development and production of diverse products in traditional chemical industries as well as many emerging new technologies. The chemical engineer guides the passage of the product from the laboratory to the marketplace, from ideas and prototypes to functioning articles and processes, from theory to reality. This requires a remarkable depth and breadth of understanding of physical and chemical aspects of materials and their production.

The chemical engineer guides the passage of the product from the laboratory to the marketplace, from ideas and prototypes to functioning articles and processes, from theory to reality. 

The undergraduate program provides a chemical engineering degree that is a passport to many careers in directly related industries as diverse as biochemical engineering, environmental management, and pharmaceuticals. The degree is also used by many students as a springboard from which to launch careers in medicine, law, management, banking and finance, politics, and other pursuits. For those interested in the fundamentals, a career of research and teaching is a natural continuation of their undergraduate studies. Whichever path the student may choose after graduation, the program offers a deep understanding of the physical and chemical nature of things and provides an insight into an exploding variety of new technologies that are rapidly reshaping the society we live in.

Students enrolling in the PhD program will have the opportunity to conduct research in these and other areas. Students with degrees in chemical engineering and other engineering disciplines, in chemistry, in physics, in biochemistry, and in other related disciplines are all natural participants in the PhD program and are encouraged to apply. The Department of Chemical Engineering at Columbia is committed to a leadership role in research and education in frontier areas of research and technology where progress derives from the conjunction of many different traditional research disciplines. Increasingly, new technologies and fundamental research questions demand this type of interdisciplinary approach.