

Urban Water Challenge Kartik Chandran

December 7th, 2015

Brief overview of biological sewage treatment

Aerobic C &N Disinfection Solids, inerts Recycle of separation bacteria removal and discharge A high fraction of WWT energy goes to aeration \$MM in organic chemical purchase **Bacteria could produce** unwanted products (N₂O)

Engineered Resource Recovery from 'Waste' Streams

- Does decentralization truly enhance resilience?
- Is there an optimum (cost, energy?)

Layout of activities

- Characterization of flows and C,N,P loads
 - Including food waste
 - Design of the recovery system
- Recovery endpoints
 - Energy
 - Impact on current energy provider
 - Nutrients as fertilisers
 - Local or regional use?
 - Prospect of importing carbon and nutrients for conversion at RdP? (Similar model to Dharavi, India)
- Identifying location of recovery system(s)
- Sustained operation and monitoring

Contact information

Kartik Chandran
Associate Professor
Director, Wastewater and Climate Change
Program

Director, Columbia University Biomolecular Environmental Sciences

Email: kc2288@columbia.edu

Phone: (212) 854 9027

URL: www.columbia.edu/~kc2288/

Energy self-sufficiency for sewage treatment?

Energy present	Energy needed
~ 2500 kWh/MG	~2500 kWh/MG

- Assuming 34% conversion of organic matter to methane and electricity
- · Assuming 'conventional' nitrogen removal
- Can 'import' carbon (NYC starting with this)
 - Not at the expense of excessive N discharges

- Distributed treatment in NYC
- Flow: 1.2 billion gallons per day
 - 1860 tons of organic carbon (ox. state?) per day
 - 280 tons of N(-III) per day
 - 60 tons of P(+V) per day

The connection to food

(one example of embedded water-energy-resources)

Possible flowsheet for C, N and P recovery

(Part of new EPA Center)

