Recent Research in Chen Group

Development of novel catalysts in heterogeneous catalysis and electrocatalysis

Single crystal surfaces:
- Fundamental atomic-level understanding through experiments and theory

Supported catalysts:
- More relevant to industrial catalysts and commercial processes

Research approach:
Combining model surfaces with supported catalysts

Example 1: Heterogeneous catalysis for CO₂ activation

Key reaction pathways:
- CO₂ reduction by light alkanes

Tuning selectivity with non-precious metal catalysts
- Fe modification of Ni catalysts improves CO selectivity while maintaining high catalytic activity
- In-situ X-ray spectroscopy probes the phase and function of bimetallic catalysts

Example 2: Conversion of inexpensive molecules into valuable chemicals

Key reaction steps:
- Selective scission of C-O bonds in the HDO reaction of glycerol

Example 3: Electrocatalysis of CO₂ to value-added products

Key reaction processes:
- Electrocatalytic (EC), thermocatalytic (TC), and combined hybrid (HB) processes for CO₂ reduction to methanol

Enhancing Activity and Reducing Cost for CO₂ Electrochemical Reduction
- Pd supported on transition metal carbides (TMCs) show high activity for the CO₂ reduction reaction to produce syngas (CO/H₂ mixture)
- By supporting Pd on TMCs, the cost of the catalyst can be reduced

Bimetallic and carbide catalysts offer the advantages of reduced cost and enhanced activity, selectivity and stability.

Example 3 (continued):
- Phosphorus (P)- and gallium (Ga)-modified ZSM-5 catalyzes a one-step reaction from CO₂ and ethane to aromatics
- DFT calculations provide insight into the effect of Ga- and P-modification, and the role of CO₂.

Tandem reactions of CO₂ reduction and ethane aromatization

Enhancing Activity and Reducing Cost for CO₂ Electrochemical Reduction

L.R. Winter, E. Gomez, B. Yan, S. Yao, J.G. Chen, Applied Catalysis B: Environmental (2018).

E. Gomez, S. Kattel, B. Yan, S. Yao, J.G. Chen, Nature Communications (2018).
