

 \bullet

 \bullet

The Electrochemistry Lab at Columbia University West Group

Investigation of New Interconnect Metals

Cobalt will be investigated as a replacement for copper in IC chip interconnects Electrodeposition of single crystal interconnects will result in ballistic conductance ues at the Nano-scale: Resistivity Set-up for Co Electrodeposition Issues at the Nano-scale: Resistivity

Experimental Set-up

Model Configuration

 $(1.98 \pm 0.34) \times 10^{-7}$

MCMC Results

1~20

7.98 <u>+</u> 4.38

 $1 \times 10^{-6.48 \pm 0.21}$

Parameter Estimation Using Data Science Technique

 $(15.7 \pm 2.6) \times 10^{-14}$

Substrate: Ru [0001] sputtered epitaxially onto single crystal Al_2O_3 [0001]

Electrodeposition on Patterned Substrates

Single crystal metallic interconnect will be grown in via, seeded by single crystal silicided Si substrate

Dielectric

Single crystal, silicide substrate

Simulation for State-of-art Battery

Developing and Testing Physical Models

Understanding Limiting Processes

Experimenta Measurements

Time (hr)

Algorithmic Model Development

Building Physical Models

Modeling Cathode Aging

Time (h)

Characterization of Membranes

3.2

€ _{3.0}

Voltage 8.5 9.6

2.4 -

2.2

₽ _{1.5} -

0.0

Table Parameter RSS

Model Guided

Design of Experiment

 $\begin{array}{ccc} P_1 & & \#_1 \\ P_2 & & \#_2 \end{array}$